首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2803篇
  免费   476篇
  国内免费   287篇
  2024年   7篇
  2023年   111篇
  2022年   60篇
  2021年   129篇
  2020年   163篇
  2019年   176篇
  2018年   141篇
  2017年   148篇
  2016年   168篇
  2015年   190篇
  2014年   184篇
  2013年   208篇
  2012年   193篇
  2011年   143篇
  2010年   124篇
  2009年   153篇
  2008年   141篇
  2007年   180篇
  2006年   120篇
  2005年   108篇
  2004年   91篇
  2003年   94篇
  2002年   79篇
  2001年   66篇
  2000年   56篇
  1999年   54篇
  1998年   40篇
  1997年   33篇
  1996年   42篇
  1995年   25篇
  1994年   21篇
  1993年   22篇
  1992年   17篇
  1991年   14篇
  1990年   6篇
  1989年   6篇
  1988年   12篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1978年   5篇
  1976年   1篇
  1975年   1篇
排序方式: 共有3566条查询结果,搜索用时 281 毫秒
1.
  1. Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co‐occurring plant species.
  2. Using a Holarctic dataset of exposed‐feeding and shelter‐building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.
  3. Our plant–caterpillar network data derived from plot‐based samplings at three different continents included >28,000 individual caterpillar–plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.
  4. The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed‐feeding and shelter‐building caterpillars.
  5. Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host‐specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large‐scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
  相似文献   
2.
Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co‐evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses.  相似文献   
3.
Big, beautiful organisms are useful for biological education, increasing evolution literacy, and biodiversity conservation. But if educators gloss over the ubiquity of streamlined and miniaturized organisms, they unwittingly leave students and the public vulnerable to the idea that the primary evolutionary plot of every metazoan lineage is “progressive” and "favors" complexity. We show that simple, small, and intriguingly repulsive invertebrate animals provide a counterpoint to misconceptions about evolution. Our examples can be immediately deployed in biology courses and outreach. This context emphasizes that chordates are not the pinnacle of evolution. Rather, in the evolution of animals, miniaturization, trait loss, and lack of perfection are at least as frequent as their opposites. Teaching about invertebrate animals in a “tree thinking” context uproots evolution misconceptions (for students and the public alike), provides a mental scaffold for understanding all animals, and helps to cultivate future ambassadors and experts on these little‐known, weird, and fascinating taxa.  相似文献   
4.
Rickettsia parkeri, a member of the spotted fever group rickettsias, was first described in 1939 and was thought to be non‐pathogenic until recently, when it was found to cause a spotted fever‐like illness in humans and areas of necrosis (eschars) at the sites of tick bites. Accordingly, there is currently much interest in this emerging pathogen. In this study, all published articles concerning R. parkeri were reviewed and analyzed for evidence of relatedness among this agent and other spotted fever group (SFG) rickettsiae which also produce similar clinical syndromes and/or eschars, including R. conorii, R. africae, and R. sibirica. A synthesis of the historical (antigenic) and recent (molecular) data supporting a phylogenetic sub‐grouping of these SFG organisms is presented and comments are offered about the taxonomy of rickettsial organisms in general, and R. parkeri in particular.  相似文献   
5.
Aim To describe a protocol for incorporating a temporal dimension into historical biogeographical analysis, while maintaining the essential independence of all datasets, involving the generation of general area cladograms. Location Global. Methods General area cladograms (GACs) are a reconstruction of the evolutionary history of a set of areas and unrelated clades within those areas. Nodes on a GAC correspond to speciation events in a group of taxa; general nodes are those at which multiple unrelated clades speciate. We undertake temporal calibration of GACs using molecular clock estimates of splitting events between extant taxa as well as first appearance data from the fossil record. We present two examples based on re‐analysis of previously published data: first, a temporally calibrated GAC generated from secondary Brooks parsimony analysis (BPA) of six extant bird clades from the south‐west of North America using molecular clock estimates of divergence times; and second, an analysis of African Neogene mammals based on a phylogenetic analysis for comparing trees (PACT) analysis. Results A hypothetical example demonstrates how temporal calibration reveals potentially critical information about the timing of both unique and general events, while also illustrating instances of incongruence between dates generated from molecular clock estimates and fossils. For the African Neogene mammal dataset, our analysis reveals that most mammal clades underwent geodispersal associated with the Neogene climatic optimum (c. 16 Ma) and vicariant speciation in central Africa correlated with increased aridity and cooler temperatures around 2.5 Ma. Main conclusions Temporally calibrated GACs are valuable tools for assessing whether coordinated patterns of speciation are associated with large‐scale climatic or tectonic phenomena.  相似文献   
6.
Despite similar ecology, mating systems and female preferences for supernormal tails, the 17 species of African widowbirds and bishops (Euplectes spp.) show astonishing variation in male tail ornamentation. Whereas bishops retain their brown nonbreeding tails in nuptial plumage, widowbirds grow black nuptial tails, varying in length from a few centimetres in E. axillaris to the extreme half metre train of E. progne. Here, we phylogenetically reconstruct the evolution of the discrete trait, nuptial tail and the continuous trait, tail length, using a molecular phylogeny of 33 Euplectes subspecies. Unlike many recent findings of labile evolution of plumage ornaments, our results suggest that the nuptial tail of Euplectes is a derived and phylogenetically conserved ornamental trait that, once gained, shows directional evolution in its expression. Directionality is demonstrated in the trivial sense of a short‐tailed ancestor, and by contingency and randomization tests suggesting that branches with increasing tail length are overrepresented. This supports an early origin and strong retention of directional female mate choice in widowbirds and bishops, as previously indicated by empirical and experimental results, and provides a less labile, yet rapid scenario of sexually selected diversification.  相似文献   
7.
Phylogenetic analyses of lekking, lek spatial organization, and cooperative and coordinated lek display in the manakins (Aves: Pipridae) demonstrate that variation in social behavior in the group has a strong, phylogenetic component. Two of the three classes of social behavior examined also show significant phylogenetic constraints. Current adaptive plasticity models are insufficient to explain the phylogenetic variation in these behaviors in the manakins. These findings support the conclusion that vertebrate reproductive social behavior has an evolutionary history, and that it is not determined solely by adaptive individual plasticity to current conditions. The evolution of social behavior, particularly through sexual selection, can have historical consequences that can limit subsequent behavioral adaptation.  相似文献   
8.
9.
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait‐space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号